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A grid noise suppression algorithm for the numerical solution of Maxwell’s equations is 
developed. The algorithm introduces nonlinear diffusive damping into the equations governing 
the transverse components of the electromagnetic fields. The transverse-longitudinal field 
decomposition is preserved by the damping; however, the energy in short wavelengths 
associated with the grid size is dissipated, and therefore total energy is not conserved. Exam- 
ples are given of one- and two-dimensional vacuum wave propagation and a one-dimensional 
planar relativistic diode. In particular, it is shown for the case of one-dimensional vacuum 
wave propagation that this technique reduces the computational errors as compared to leap- 
frog in the L,, L,, and L, norms. 0 198s Academic press, IN 

We describe in this article the generalization of Filtering Remedy and 
Metholodogy (FRAM) Cl] to the numerical solution of Maxwell’s equations. This 
technique is introduced to reduce grid noise, that is, the noise of wavelengths 
associated with the grid size of the discrete mesh used to solve the equations. Even 
in pure electromagnetic (em) wave propagation in vacuum, or other homogeneous 
media, this short wavelength noise is significant if one considers sharp wave 
packets. In the case of em propagation in vacuum the equations are linear in the 
fields and post-filtering techniques can be used. That is not the case in the presence 
of particle-electron and ions-currents, which become nonlinear sources in Maxwell’s 
equations. The grid noise couples, therefore, in a nonlinear fashion and post-lilter- 
ing of the unphysical numerical noise might become inappropriate. 

We envision the applications of this technique, as a significant improvement over 
the traditional leapfrog method, to cases in which Maxwell’s equations become 
nonlinear. Illustrative examples are: Wave propagation in nonlinear media and 
electromagnetic and plasma particle simulations. This technique is also a viable 
alternative to post-filtering in the numerical solution of sharp wave packet 
propagation even when the equations are linear. 

The organization of this article is as follows: 

(a) introduction of FRAM as generalized for E and M; 
44 

0021-9991/85 $3.00 
CopyrIght I( 1985 by Academic Press. Inc. 
All rights ol reproduction in any form reserved. 



NOISE SUPPRESSION ALGORITHM 45 

(b) application to 1-D and 2-D vacuum wave propagation; 
(c) application to a 1-D relativistic electron diode; 
(d) conclusions. 

a. INTRODUCTION OF FRAM AS GENERALIZED FOR E AND M 

We consider Maxwell’s equations in the form in which the vector quantities are 
the sum of the transverse, divergence free, and longitudinal, curl-free, components. 
For the transverse components we have 

cv x E, = -aBlat; cv x B = aE,/at + 47rJ,; 

V.E,=V.B=O. 
(1) 

The transverse part of the current density JT is given by JT = J + (1/4rr)(a/at) EL. 
In this expression J is the total current density and E, is the longitudinal part of the 
electric field and satisfies Poisson’s equation V * EL = 47rp, where p is the charge 
density. Naturally B is purely transverse. 

A widely used algorithm to solve Eqs. (1) is leapfrog [2]. To reduce the grid 
noise generated by leapfrog we introduce the following modified set of equations: 

E”+l=~n+l 
T T -Vxa,VxE;At, 

B”+l/* = @+1/2-V x a,(v x B”-‘i2 - 47r J;- '/2/~)At. 

Pa) 

(2b) 

In Eqs. (2) ET and B stand for the leapfrog solution of Eqs. (1) obtained at the 
(n + 1)th timestep of integration from the complete algorithm solution at the nth 
timestep. 

In Eqs. (2a) and (2b) the diffusive correction must be constructed by using the 
previous timestep fields for the algorithm to be monotonic [3]. It is this feature 
that assures the suppression of spurious nonphysical oscillations. The quantities ~1~ 
and ag are nonlinear anisotropic numerical diffusivities which are functions of space 
and time and are zero in regions of smooth solutions of the leapfrog equations and 
nonzero, in a manner and value that we discuss below, in regions for which leapfrog 
produces nonphysical oscillations. 

The form of the added terms in Eqs. (2) are such that 

(i) the second spatial order operators are diffusion-like terms, and in the 
linear sense when aE and a,#0 they produce dissipative terms of order k2 in 
Fourier space; 

(ii) the algorithm reproduces the solution to Maxwell’s continuum equations 
for long wavelengths: long compared with the mesh spacing; 

(iii) by their form they preserve the transverse nature of ET and B. 

We turn our attention now to the central point of how to choose the functions aE 



46 CHAPMANANDWAISMAN 

and clg as to realize an accurate representation of the solution of Maxwell’s 
equations. 

A truncation error analysis of the leapfrog algorithm shows that it is second 
order accurate in space and time for uniform grid spacing. The leading order error 
term contains third order derivatives in each of the coupled equations. The addition 
in Eqs. (2) of second order space operators is therefore added to make the 
algorithm monotonic in the sense of Reference 4. The diffusivities c(~ and LYE are then 
obtained by using the Taylor remainder theorem, i.e., by choosing them as to be 
greater than the remainder of the truncation error of the leapfrog algorithm. For 
the one-dimensional wave propagation in vacuum in an equally space mesh, one 
obtains c(~ = CX~ = c(Ax/2 - c At/2). The diffusion-like terms in Eq. (2), which are 
energy dissipative in nature, formally reduce the difference scheme to first order in 
space in time. 

To avoid unneeded diffusion, and dissipation, CC~ and !xB are switched to nonzero 
values only if the numerical solution exceeds local physical bounds. Since the leap- 
frog algorithm is explicit in time, wave information cannot cross a full mesh 
increment in one timestep and physical bounds are obtained, for instance, by 
estimating the local characteristic solutions obtained at time n from the nearest 
neighbor information of a given cell. We find that less stringent upper and lower 
bounds, like the maximum and minimum of the fields at neighboring points, are 
adequate in that they produce accurate answers as we shall see from our 2-D exam- 
ple. 

In summary, Eqs. (2) are used with the following prescription (e.g., for aE and 
one of the components of E,): 

G(E=O if Eli, < B < Ez,, , (3) 

i 

At 
LX~N c A1/2-c2- 

2 
otherwise, 

where Al is Ax in l--D and a typical mesh spacing length in higher dimensions and 
E~in and Ez,, represent the physical bounds described above. 

To conclude this part, let us remark that the operations needed to suppress noise 
in E,, B are a very small fraction of the time used in the typical “pushing” of par- 
ticles in E & M plus particle simulations. 

b. 1-D AND 2-D VACUUM WAVE PROPAGATION 

We consider the propagation in vacuum in the X direction of a 1-D wave with 
B = B2 and E = Ej. We use an equally spaced mesh and drop the subindexes T and 
L, because in this and the following example the fields are purely transverse. The 
time and space centering is represented by the notation ET, B;:#j, where the 
superscript represents time level and the subscript mesh location. Any values of E 
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or B not centered in this way are to be interpreted as the corresponding arithmetic 
means over neighboring points and time levels, for instance, 

Ej”_l:/2’=1/4[Er+E,“+,+Ei”+‘+E:=,’]. (4) 

We define a switch function associated with field components F as 

if FMIN <P< FM,,, 
otherwise, (5) 

where F is the provisional value of F advanced from the full solution of the previous 
timestep by leapfrog and FMIN and FMAX are physical bounds on F as explained in 
a. 

For this example it is advantageous to define the forward and backwards local 
characteristics, i.e., 

G’=ETB. (6) 

Having introduced the necessary notation we now write the difference equations for 
B and E, i.e., 

where 

aj = 1/2(c Ax - c* At) Max[GB,“;$‘,‘, 8BJT113/22, ~EJ’]. (8) 

In Eqs. (7) and (8) and in what follows we use tl to denote either aE or clg. In the 
evaluation of the 6B switches of Eq. (8) the values employed for B,,, and B,,, 
are, for instance, for 8Bjn;11/22, 

[M, m] Bj’;l:/,‘= [M, m][B*;;$, Bj”;,‘l,2], 

where [M, m] represents the Max and Min respectively, and 

(9) 

B*;y;,!j = (1/2)[G,<&‘* - G,y1/21’*]. (10) 

The switch c?E,‘! in Eq. (8) comes from the n time update for E. The difference 
equation used to advance E is 

where 

aj+ 112 = 1/2(C AX - c* At) Max[6E;, “ET+ 1, 8B;;#!], (12) 

581/58/l-4 
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TABLE I 

L, L2 L, 

FRAM plus leapfrog 7.8 3.6 0.98 
Leapfrog 14.4 6.11 1.28 
Damped 20.5 12.1 0.98 

and in the evaluation for the 6E switches in Eq. (12) the bounds used are, for 
instance, for “EJ’, 

[M, m] Ej’= [M, m][E*;, E;] (13) 

where 

E*: = (1/2)CG,+“, + G,;“J. (14) 

The above algorithm was tested on a long wavelength standing wave A= 200 Ax 
for one period and the results were identical to machine roundoff with leapfrog 
alone. The other test problem was propagation of a square pulse 20 cells wide 
through a uniform mesh of Ax = 1, c At/Ax = l/3 for 120 timesteps. 

Figure 1 shows the results for the FRAM algorithm, pure leap frog and the case 
in which the numerical diffusion is always on. Table I shows computed error for 
cases (l)-(3), where the notation L1, L,, L, refers to the absolute value norm, the 
square norm and the supremum norm, respectively. 

Poshm I” Number of Cell Units 

FIG. 1. Square wave of 20 cells wide propagating through a 1-D equally space mesh after 120 
timesteps for c At/Ax = i with periodic boundary conditions; Leapfrog (-), FRAM (- . -), pure diffusion 

t-1. 
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We now turn our attention to a 2-D Cartesian example with field components 
E,, E,, B,. The differential equations, as modified by the numerical diffusion terms 
are 

aE,fat = -C away + alax (Q aE,lax) + a/ay (u,, aExjay), Wa) 

aiqat=~aB,~ax+a~a~ (all, a.qax)+ alay (azya~y~ay), (15b) 

aB,iat=c ax-ay +ajax (t13x aB,jax)+a/ay tusy ae,lay). 
caEy aEx) 

(15c) 

In Eqs. (15) clir, cliY, cliz denote the diffusivities in the x, y, z directions 
corresponding to field component i, with the assignment i = 1 to E,, i = 2 to Ey, 
and i = 3 to B,. We use an equally space mesh Ax = Ay = A and the field centering 
used is shown in Fig. 2. For the sake of brevity we give the difference equation to 
advance E,: the ones for E, and B, are completely equivalent up to centering and 
the reader can obtain them in a straightforward manner. To avoid carrying too 
many subindexes we use E for E, and B for BZ, we then have 

where the numerical diffusion fluxes are given by 

where cllX and c(iY, at i + 1, j and i + l/2, j+ l/2, respectively, are given by 

a ix = 1/2(c Ax - c2 At) Max[6E;;$:j, 6E;;$zj, SB;, l,j], VW 

i,j+l 
t------- ------- 

t 
I 
I 

1 

I 
I 

4 B: 

I 
I 
t 

EY I 
I 

I I 
I I 

i ______ -,------i 

i,i Ex - 
i+l, j 

FIG. 2. Centering of fields used in two-dimensional vacuum wave propagation. 
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where 

‘Br,l,j=MaxC’B:+,l2j.,l2, ‘&‘+3/2,j+1/2, 6@+1/2,J- l/25 6&‘+3/2+1/21, (18b) 
a lY= 1/2(c Ax- c2 At) Max[6E;;,‘/2j+,, 6E? ‘f2. SB;;“‘]. If 112.J’ (18~) 

Note in Eqs. (18a), (18b), and (18~) that the centering of switch 6B is not com- 
pletely compatible with the other quantities; this is done to keep the algorithm sim- 
ple, and we find that this does not detract from our results. 

The bounds used to evaluate the switches in Eqs. (18a) and (18b) are, for 
instance, for E7;:/2j, 

that is, the Max or Min of the field component at its own location and its four 
nearest neighbors. The definition for [M, m] Byj follows exactly the same lines. 

FIG. 3. Magnetic field versus x, y for leapfrog for two-dimensional wave propagation in vacuum at 
t=9QAl. 
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This algorithm has been coded and tested on the following test problem: 

Ex = Ey = Bz( x, y, 0) = 0, 

Ey(x = 50, y, t) = -1, 

Ex(x, y = 50, 2) = 1, 

Ax = Ay = 1, c At/Ax = l/3. 

Figures 3-8 show the results of three test calculations at t = 90 At. We plot the B, 
field in Figs. 3-5 and in Figs. 6-8 the field energy density, i.e., [El ’ + IBI ‘. Figures 3 
and 6 are the results of the basic leapfrog algorithm and as expected the quantities 
plotted are quite noisy behind the wavefronts. Figures 4, 7 show the results with 
6B = 6E = 1 for all x, y, t, that is, the dissipation on always. Note the noise is sup- 
pressed but the wavefronts are quite diffuse. Figures 5 and 8 show the results of the 
complete algorithm. Note the sharp fronts with the suppression of grid noise. 

BZ 

FIG. 4. Same as Fig. 3 but leapfrog + diffusive algorithm. 
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c. 1-D PLANAR RELATIVISTIC DIODE IN A MAGNETIC FIELD 

We show here an example of how numerical diffusion applied to the transverse 
part of the em fields can be used to accelerate and stabilize convergence in 
calculations that use relaxation pseudo-time marching procedures to obtain a 
steady-state solution for a given system. 

To this end let us consider a 1-D planar relativistic diode with an applied voltage 
V between the anode and cathode plates located at y = d and y = 0, respectively. A 
magnetic field in the z direction B, is present, such that the flux per unit length in 
the x direction I)J = 1: B, dy is time conserved. Electrons start at the cathode surface 
with velocity v = 0 and their emission current is space-charge limited. Electron tra- 
jectories stay in the x, y plane, the field components present E,, E,, and B, are only 
functions of y and t. 

The differential equations satisfied by the fields are 

aE,jay = -a$dla$ = 471p, 

aE,lat = c asz/ay -471~,, 

aBZlat = c as,jay, 

(204 

(2Ob) 

(2Oc) 

BZ 

FIG. 5. Same as Fig. 3 but leapfrog -B FRAM. 
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where we have introduced in Eq. (20a) the electric potential $ and p is the charge 
density. 

The boundary conditions (bc) are 

4(O) = 0, @la) 

(b(d) = -1; E, dy = v, @lb) 

E,(O) = 0, WC) 

E,(d) = E,(O) = 0. (21d) 

We observe that integrating Eq. (20~) in y and using the metallic (bc) of 
Eq. (21d) for E,, one obtains that a/at 1: B, dy =O. The bc of Eq. (21a) is the 
statement of space-charge limited emission. Equations (21a), (21b), and (21~) 
together are (bc) for the solution of Poisson’s equation (20a) and determine the 
electron emission current density as a function of time. The electron dynamics is 
given by 

dp/dt = -e(E + v x B), (22) 

FIG. 6. Field energy. Same as Fig. 3 but magnetic field + field energy density. 
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where p = m,yv, with m, being the electron rest mass and y = l/J1 - (u/c)‘. The 
electron current is given by J = pv. An interesting property of the 1-D diode set of 
equations is that E: and E,L are constant in y and can be taken to be zero without 
any loss of generahty. That results in c = J,. 

To obtain steady state, that is a state in which E,(y, t) = 0 and B, and Ey have 
time independent self-consistent profiles, we initialize the problem with zero charge 
in the gap and 

Bz( Y, 0) = @id, W-4 

E,(y,O)=O. Wb) 

The potential at the anode d(d) is linearly ramped from zero to the value 4(d) = V 
in about two cyclotron periods, T,= 2nm,cd/$. The calculation is continued 
thereafter keeping that constant value V for d(d) for a few more 7,‘s. In our 
calculations, we considered a case for which elC//(m,c’) < (1 + eV/m,c2)2 - 1 for 
which a steady state exists such that the emitted electrons cross the gap [S]. 

The numerical example we report is with I’= 1 MV, $ = 3 kGcm, d = 1 cm. We 
used a 25-zone uniform grid. In each timestep Poisson’s equation is solved, the 
emission current is calculated and the field is advanced; electrons are pushed using 

FIG. 7. Field energy. Same as Fig. 6 but diffusive algorithm. 
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FIG. 8. Field energy. Same as Fig. 6 but with FRAM. 

a time-centered relativistic algorithm [2]. Charge and current are shared in the grid 
using particles in cell linear interpolation. 

The pair of Maxwell’s equations (20b) and (2Oc) is solved using the algorithm 
described in the 1-D vacuum case with two important differences: (i) as written in 
Eq. (2b) the diffusive flux for the B field equation contains the current; i.e., 
V x B - 47rJ,/c and (ii) the diffusivities By and olg were constant in time and space 
and set equal to 2c dy.’ The difTusivities are selected in this way because as we have 
stated at the beginning of this section our object is to accelerate convergence to 
steady state. The calculation was run at a Courant number of 0.75. We show in 
Fig. 9 B, near y = d and observe a very quick approach to steady state N 2 - 32,. 
For t > 0.6 nsec we set aE = aB = 0 and revert back to the basic leapfrog scheme to 
show that one indeed has obtained steady state. In Fig. 10 we show B, at y = 0.5 cm 
for the pure leapfrog algorithm. One observes the typical grid noise and what seems 
to be a slowly divergent trend. In Fig. 11, we show emission current as a function of 
time for both algorithms: diffusive and leapfrog. We note that the current density 
obtained by the leapfrog method oscillates around the steady-state value for the 

’ With this large value of the diffusivity, stability considerations make it necessary to use an implicit 
algorithm for the diffusion term in each equation. 
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FIG. 9. B field at anode. Magnetic field at the anode as a function of time for the one-dimensional 
diode. The arrow indicates the change at f = 0.6 ns from the diffusive algorithm to leapfrog. 
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FIG. 10. Magnetic field at mid-gap as a function of time for leapfrog. Note apparent divergence of 
grid noise. Insert is a blow-up of plot for 1.6 < t < 1.63 ns to show that the noise has the grid frequency 
(At = 0.001 ns). 
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FIG. 11. Emission current density. Electron cathode emission current as a function of time for both 
algorithms used. See text for explanation; Leapfrog (-), diffusive (---). 

current density obtained by using the diffusive algorithm. That steady-state value 
agrees with the analytic value(s) to within -3 percent [6]. 

This result should be interpreted as an illustration of the technique we are using. 
We are aware that one could obtain for this simple case comparable results without 
considering the transverse part of the E 8z M fields using relaxation techniques, 
and/or by more sophisticated particle pushing and sharing algorithms. 

SUMMARY AND CONCLUSION , 

We have adapted a technique used to suppress noise in the numerical solution of 
the equations of hydrodynamics to Maxwell’s equations. The technique preserves 
the transverse longitudinal decomposition of the em fields and it is dissipative at 
short wavelengths. In the one- and two-dimensional vacuum em wave propagation 
it significantly reduced the computational errors with respect to the analytically 
known solutions over the leapfrog algorithm. This is true in the L,, L,, and L, 
norms. 

We have shown how a form of the algorithm, in which the numerical diffusion is 
always applied, was used to accelerate convergence to steady state in a case in 
which particle motion is coupled with the fields. At present we are developing a 
code for 2&D relativistic particle pushing em simulations, both for steady and time- 
dependent states, in which these ideas are used. 

It remains to asses how important in different problems is the energy dissipation 
introduced by FRAM and to find plasma simulation cases in which its application 
demonstrably and significantly improves the accuracy of the results. 
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